If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3x2 = 4x + -6 Reorder the terms: 3x2 = -6 + 4x Solving 3x2 = -6 + 4x Solving for variable 'x'. Reorder the terms: 6 + -4x + 3x2 = -6 + 4x + 6 + -4x Reorder the terms: 6 + -4x + 3x2 = -6 + 6 + 4x + -4x Combine like terms: -6 + 6 = 0 6 + -4x + 3x2 = 0 + 4x + -4x 6 + -4x + 3x2 = 4x + -4x Combine like terms: 4x + -4x = 0 6 + -4x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 2 + -1.333333333x + x2 = 0 Move the constant term to the right: Add '-2' to each side of the equation. 2 + -1.333333333x + -2 + x2 = 0 + -2 Reorder the terms: 2 + -2 + -1.333333333x + x2 = 0 + -2 Combine like terms: 2 + -2 = 0 0 + -1.333333333x + x2 = 0 + -2 -1.333333333x + x2 = 0 + -2 Combine like terms: 0 + -2 = -2 -1.333333333x + x2 = -2 The x term is -1.333333333x. Take half its coefficient (-0.6666666665). Square it (0.4444444442) and add it to both sides. Add '0.4444444442' to each side of the equation. -1.333333333x + 0.4444444442 + x2 = -2 + 0.4444444442 Reorder the terms: 0.4444444442 + -1.333333333x + x2 = -2 + 0.4444444442 Combine like terms: -2 + 0.4444444442 = -1.5555555558 0.4444444442 + -1.333333333x + x2 = -1.5555555558 Factor a perfect square on the left side: (x + -0.6666666665)(x + -0.6666666665) = -1.5555555558 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 2[(2p+7)-3(p-1)]=-7 | | Z-20/-23=-14 | | 87=23+8x | | x^3+9*x^2-54*x-16=0 | | 1/2(n-8)=1/2n-3/2 | | 5t-9/t=12 | | 5t-9/t=9 | | 2+4x=3x-7 | | 9-(x-2y)(x-2y)= | | 2x=3x-12-4 | | 9x+99=-36 | | T+6t-7=7t-7 | | 8x+24+68=180 | | 4(x-6)-2=28 | | 1/5(15=5)=8n-9 | | -g+8=-g+11 | | 5x+6=10x-3 | | -4x-3(-6x+10)=-142 | | x/-9-4=-11 | | 3(3q-7)=16q | | 2x+8=-9x+96 | | 2(3x+4y-5)= | | 45=3x+15 | | m^2+8m-29=0 | | 6/5w-15=2/5 | | x^5+21x^3-100x=0 | | 4=1(x-3)+2-x | | 5z^2+2z= | | 6(7x-3)(6x+7)=0 | | 1.2x+1.5x=-8.1 | | 7x-66=-157 | | F(2a)=x^3+2x-4 |